Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 133(4): 509-520, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38320313

RESUMEN

BACKGROUND AND AIMS: In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS: We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS: Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS: Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.


Asunto(s)
Alcaloides , Endófitos , Epichloe , Festuca , Lolium , Poliaminas , Alcaloides/metabolismo , Alcaloides/análisis , Endófitos/química , Endófitos/fisiología , Epichloe/química , Epichloe/fisiología , Ergotaminas/metabolismo , Festuca/microbiología , Festuca/fisiología , Herbivoria , Compuestos Heterocíclicos con 2 Anillos , Alcaloides Indólicos/metabolismo , Lolium/microbiología , Lolium/fisiología , Micotoxinas , Defensa de la Planta contra la Herbivoria , Poaceae/microbiología , Poaceae/metabolismo , Simbiosis
2.
J Agric Food Chem ; 72(4): 2397-2409, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230662

RESUMEN

Endophytic fungi can benefit the host plant and increase the plant resistance. Now, there is no in-depth study of how Alternaria oxytropis (A. oxytropis) is enhancing the ability of inhibiting pathogenic fungi in Oxytropis ochrocephala (O. ochrocephala). In this study, the fungal community and metabolites associated with endophyte-infected (EI) and endophyte-free (EF) O. ochrocephala were compared by multiomics. The fungal community indicated that there was more A. oxytropis, less phylum Ascomycota, and less genera Leptosphaeria, Colletotrichum, and Comoclathris in the EI group. As metabolic biomarkers, the levels of swainsonine and apigenin-7-O-glucoside-4-O-rutinoside were significantly increased in the EI group. Through in vitro validation experiments, swainsonine and apigenin-7-O-glucoside-4-O-rutinoside can dramatically suppress the growth of pathogenic fungi Leptosphaeria sclerotioides and Colletotrichum americae-borealis by increasing the level of oxidative stress. This work suggested that O. ochrocephala containing A. oxytropis could increase the resistance to fungal diseases by markedly enhancing the content of metabolites inhibiting pathogenic fungi.


Asunto(s)
Ascomicetos , Oxytropis , Swainsonina/metabolismo , Oxytropis/metabolismo , Oxytropis/microbiología , Apigenina/metabolismo , Multiómica , Alternaria/metabolismo , Hongos/metabolismo , Ascomicetos/metabolismo , Endófitos/genética , Endófitos/metabolismo , Glucósidos/metabolismo
3.
Mycologia ; 115(5): 614-629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37463242

RESUMEN

Bipolaris gigantea (= Drechslera gigantea) causes Bipolaris leaf spot (BLS), a devastating and widespread disease on industrial hemp (Cannabis sativa). An investigation of relationships of isolates from hemp and other plants indicated variation in ploidy that has not previously been reported for Bipolaris. Isolates were obtained from BLS lesions on hemp and nearby weeds in 11 Kentucky counties and were similar to each other in morphology and growth characteristics. In total, 23 isolates were analyzed by multilocus phylogenetics, of which seven were also chosen for whole genome shotgun sequencing. Genes for RNA polymerase II subunit 2 (RPB2), translation elongation factor 1-α (TEF1), and mating type (MAT1) indicated that 13 of the isolates were haploid with only a single allele each of RPB2 and TEF1 and either the MAT1-1 or MAT1-2 idiomorph, whereas 10 were apparently "heteroploid" with two alleles each of RPB2 and TEF1 and both MAT1 idiomorphs. Haploids all had identical RPB2 alleles except for a 1-bp difference in two isolates, identical TEF1 alleles, and (if present) identical MAT1-2 alleles. Those alleles were also present in each heteroploid along with either of two related but distinct alleles for each gene. In contrast, haploids and heteroploids shared allelic variation of MAT1-1. In total, four haploid and two heteroploid genotypes were identified. Genome sequence data assembled to 30-32 Mb for each of four haploid isolates, but 10-31 Mb larger sizes for each of three heteroploids depending on sequencing platform and assembly program. The haploids and heteroploids caused similar disease on hemp.


Asunto(s)
Ascomicetos , Cannabis , Cannabis/genética , Bipolaris/genética , Haploidia , Ascomicetos/genética , Genes del Tipo Sexual de los Hongos/genética
4.
J Fungi (Basel) ; 8(10)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36294651

RESUMEN

Fungi of genus Epichloë (Ascomycota, Clavicipitaceae) are common endophytic symbionts of Poaceae, including wild and agronomically important cool-season grass species (subfam. Poöideae). Here, we examined the genetic diversity of Epichloë from three European species of Brachypodium (B. sylvaticum, B. pinnatum and B. phoenicoides) and three species of Calamagrostis (C. arundinacea, C. purpurea and C. villosa), using DNA sequences of tubB and tefA genes. In addition, microsatellite markers were obtained from a larger set of isolates from B. sylvaticum sampled across Europe. Based on phylogenetic analyses the isolates from Brachypodium hosts were placed in three different subclades within the Epichloë typhina complex (ETC) but did not strictly group according to host grass species, suggesting that the host does not always select for particular endophyte genotypes. Analysis of microsatellite markers confirmed the presence of genetically distinct lineages of Epichloësylvatica on B. sylvaticum, which appeared to be tied to different modes of reproduction (sexual or asexual). Among isolates from Calamagrostis hosts, two subclades were detected which were placed outside ETC. These endophyte lineages are recognized as distinct species for which we propose the names E. calamagrostidis Leuchtm. & Schardl, sp. nov. and E. ftanensis Leuchtm. & A.D. Treindl, sp. nov. This study extends knowledge of the phylogeny and evolutionary diversification of Epichloë endophytes that are symbionts of wild Brachypodium and Calamagrostis host grasses.

5.
Mycologia ; 114(4): 697-712, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35671366

RESUMEN

Epichloë coenophiala, a systemic fungal symbiont (endophyte) of tall fescue (Lolium arundinaceum), has been documented to confer to this grass better persistence than plants lacking the endophyte, especially under stress conditions such as drought. The response, if any, of the endophyte to imposition of stress on the host plant has not been characterized previously. Therefore, we investigated effects on gene expression by E. coenophiala and a related endophyte when plant-endophyte symbiota were subjected to acute water-deficit stress. Plants harboring different endophyte strains were grown in sand in the greenhouse, then half were deprived of water for 48 h and the other half were watered controls. RNA was isolated from different plant tissues, and mRNA sequencing (RNA-seq) was conducted to identify genes that were differentially expressed comparing stress treatment with control. We compared two different plants harboring the common toxic E. coenophiala strain (CTE) and two non-ergot-alkaloid-producing Epichloë strains in tall fescue pseudostems, and in a second experiment we compared responses of E. coenophiala CTE in plant pseudostem and crown tissues. The endophytes responded to the stress with increased expression of genes involved in oxidative stress response, oxygen radical detoxification, C-compound carbohydrate metabolism, heat shock, and cellular transport pathways. The magnitude of fungal gene responses during stress varied among plant-endophyte symbiota. Responses in pseudostems and crowns involved some common pathways as well as some tissue-specific pathways. The fungal response to water-deficit stress involved gene expression changes in similar pathways that have been documented for plant stress responses, indicating that Epichloë spp. and their host plants either coordinate stress responses or separately activate similar stress response mechanisms that work together for mutual protection.


Asunto(s)
Epichloe , Festuca , Lolium , Sequías , Endófitos , Festuca/microbiología , Perfilación de la Expresión Génica , Lolium/microbiología , Plantas , Agua
6.
Plant Genome ; 15(2): e20199, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35322562

RESUMEN

Tall fescue (Festuca arundinacea Schreb.) is a popular pasture and turf grass particularly known for drought resistance, allowing for its persistence in locations that are unfavorable for other cool-season grasses. Also, its seed-borne fungal symbiont (endophyte) Epichloë coenophiala, which resides in the crown and pseudostem, can be a contributing factor in its drought tolerance. Because it contains the apical meristems, crown survival under drought stress is critical to plant survival as well as the endophyte. In this study, we subjected tall fescue plants with their endophyte to water-deficit stress or, as controls with normal watering, then compared plant transcriptome responses in four vegetative tissues: leaf blades, pseudostem, crown, and roots. A transcript was designated a differentially expressed gene (DEG) if it exhibited at least a twofold expression difference between stress and control samples with an adjusted p value of .001. Pathway analysis of the DEGs across all tissue types included photosynthesis, carbohydrate metabolism, phytohormone biosynthesis and signaling, cellular organization, and a transcriptional regulation. While no specific pathway was observed to be differentially expressed in the crown, genes encoding auxin response factors, nuclear pore anchors, structural maintenance of chromosomes, and class XI myosin proteins were more highly differentially expressed in crown than in the other vegetative tissues, suggesting that regulation in expression of these genes in the crown may aid in survival of the meristems in the crown.


Asunto(s)
Festuca , Lolium , Endófitos/metabolismo , Festuca/genética , Festuca/microbiología , Lolium/genética , Poaceae/genética , Transcriptoma , Agua/metabolismo
7.
G3 (Bethesda) ; 12(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35191483

RESUMEN

Fungi from the genus Epichloë form systemic endobiotic infections of cool season grasses, producing a range of host-protective natural products in return for access to nutrients. These infections are asymptomatic during vegetative host growth, with associations between asexual Epichloë spp. and their hosts considered mutualistic. However, the sexual cycle of Epichloë spp. involves virulent growth, characterized by the envelopment and sterilization of a developing host inflorescence by a dense sheath of mycelia known as a stroma. Microscopic analysis of stromata revealed a dramatic increase in hyphal propagation and host degradation compared with asymptomatic tissues. RNAseq was used to identify differentially expressed genes in asymptomatic vs stromatized tissues from 3 diverse Epichloë-host associations. Comparative analysis identified a core set of 135 differentially expressed genes that exhibited conserved transcriptional changes across all 3 associations. The core differentially expressed genes more strongly expressed during virulent growth encode proteins associated with host suppression, digestion, adaptation to the external environment, a biosynthetic gene cluster, and 5 transcription factors that may regulate Epichloë stroma formation. An additional 5 transcription factor encoding differentially expressed genes were suppressed during virulent growth, suggesting they regulate mutualistic processes. Expression of biosynthetic gene clusters for natural products that suppress herbivory was universally suppressed during virulent growth, and additional biosynthetic gene clusters that may encode production of novel host-protective natural products were identified. A comparative analysis of 26 Epichloë genomes found a general decrease in core differentially expressed gene conservation among asexual species, and a specific decrease in conservation for the biosynthetic gene cluster expressed during virulent growth and an unusual uncharacterized gene.


Asunto(s)
Epichloe , Animales , Epichloe/genética , Estadios del Ciclo de Vida , Poaceae/genética , Simbiosis/genética , Transcriptoma
8.
J Fungi (Basel) ; 7(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34356917

RESUMEN

The legume Oxytropis sericea hosts a fungal endophyte, Alternaria oxytropis, which produces secondary metabolites (SM), including the toxin swainsonine. Polyketide synthase (PKS) and non-ribosomal peptide synthase (NRPS) enzymes are associated with biosynthesis of fungal SM. To better understand the origins of the SM, an unannotated genome of A. oxytropis was assessed for protein sequences similar to known PKS and NRPS enzymes of fungi. Contigs exhibiting identity with known genes were analyzed at nucleotide and protein levels using available databases. Software were used to identify PKS and NRPS domains and predict identity and function. Confirmation of sequence for selected gene sequences was accomplished using PCR. Thirteen PKS, 5 NRPS, and 4 PKS-NRPS hybrids were identified and characterized with functions including swainsonine and melanin biosynthesis. Phylogenetic relationships among closest amino acid matches with Alternaria spp. were identified for seven highly conserved PKS and NRPS, including melanin synthesis. Three PKS and NRPS were most closely related to other fungi within the Pleosporaceae family, while five PKS and PKS-NRPS were closely related to fungi in the Pleosporales order. However, seven PKS and PKS-NRPS showed no identity with fungi in the Pleosporales or the class Dothideomycetes, suggesting a different evolutionary origin for those genes.

9.
Toxins (Basel) ; 13(2)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669319

RESUMEN

The Epichloë species of fungi include seed-borne symbionts (endophytes) of cool-season grasses that enhance plant fitness, although some also produce alkaloids that are toxic to livestock. Selected or mutated toxin-free endophytes can be introduced into forage cultivars for improved livestock performance. Long-read genome sequencing revealed clusters of ergot alkaloid biosynthesis (EAS) genes in Epichloë coenophiala strain e19 from tall fescue (Lolium arundinaceum) and Epichloë hybrida Lp1 from perennial ryegrass (Lolium perenne). The two homeologous clusters in E. coenophiala-a triploid hybrid species-were 196 kb (EAS1) and 75 kb (EAS2), and the E. hybrida EAS cluster was 83 kb. As a CRISPR-based approach to target these clusters, the fungi were transformed with ribonucleoprotein (RNP) complexes of modified Cas9 nuclease (Cas9-2NLS) and pairs of single guide RNAs (sgRNAs), plus a transiently selected plasmid. In E. coenophiala, the procedure generated deletions of EAS1 and EAS2 separately, as well as both clusters simultaneously. The technique also gave deletions of the EAS cluster in E. hybrida and of individual alkaloid biosynthesis genes (dmaW and lolC) that had previously proved difficult to delete in E. coenophiala. Thus, this facile CRISPR RNP approach readily generates non-transgenic endophytes without toxin genes for use in research and forage cultivar improvement.


Asunto(s)
Sistemas CRISPR-Cas , Endófitos/genética , Epichloe/genética , Alcaloides de Claviceps/genética , Edición Génica , Técnicas de Inactivación de Genes , Familia de Multigenes , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endófitos/crecimiento & desarrollo , Endófitos/metabolismo , Epichloe/crecimiento & desarrollo , Epichloe/metabolismo , Alcaloides de Claviceps/biosíntesis , Alcaloides de Claviceps/toxicidad , Regulación Fúngica de la Expresión Génica , Reproducción Asexuada , Metabolismo Secundario
10.
Proc Natl Acad Sci U S A ; 116(51): 25614-25623, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31801877

RESUMEN

Nonribosomal peptide synthetases (NRPSs) generate the core peptide scaffolds of many natural products. These include small cyclic dipeptides such as the insect feeding deterrent peramine, which is a pyrrolopyrazine (PPZ) produced by grass-endophytic Epichloë fungi. Biosynthesis of peramine is catalyzed by the 2-module NRPS, PpzA-1, which has a C-terminal reductase (R) domain that is required for reductive release and cyclization of the NRPS-tethered dipeptidyl-thioester intermediate. However, some PpzA variants lack this R domain due to insertion of a transposable element into the 3' end of ppzA We demonstrate here that these truncated PpzA variants utilize nonenzymatic cyclization of the dipeptidyl thioester to a 2,5-diketopiperazine (DKP) to synthesize a range of novel PPZ products. Truncation of the R domain is sufficient to subfunctionalize PpzA-1 into a dedicated DKP synthetase, exemplified by the truncated variant, PpzA-2, which has also evolved altered substrate specificity and reduced N-methyltransferase activity relative to PpzA-1. Further allelic diversity has been generated by recombination-mediated domain shuffling between ppzA-1 and ppzA-2, resulting in the ppzA-3 and ppzA-4 alleles, each of which encodes synthesis of a unique PPZ metabolite. This research establishes that efficient NRPS-catalyzed DKP biosynthesis can occur in vivo through nonenzymatic dipeptidyl cyclization and presents a remarkably clean example of NRPS evolution through recombinant exchange of functionally divergent domains. This work highlights that allelic variants of a single NRPS can result in a surprising level of secondary metabolite diversity comparable to that observed for some gene clusters.


Asunto(s)
Péptido Sintasas , Pirazinas , Ciclización/genética , Barajamiento de ADN , Dicetopiperazinas/química , Epichloe/enzimología , Epichloe/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Péptido Sintasas/química , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Pirazinas/química , Pirazinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Plant Genome ; 12(2)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31290925

RESUMEN

Two tall fescue [Lolium arundinaceum (Schreb.) Darbysh. = Schedonorus arundinaceus (Schreb.) Dumort. = Festuca arundinacea var. arundinacea Schreb.] plant genotypes with an Epichloë coenophiala (Morgan-Jones & W. Gams) C.W. Bacon & Schardl common toxic endophyte (CTE), one with a nontoxic strain (NTE19) and one with another Epichloë species (FaTG-4) were evaluated and compared with their respective endophyte-free clones for responses to water-deficit stress in the greenhouse. One of the plant genotypes (P27) showed a positive effect of its CTE strain on tiller production after stress and resumed watering. In transcriptome analysis of the pseudostems (leaf sheath whorls), differentially expressed genes (DEGs) were defined as having at least twofold expression difference and false discovery rate (FDR) < 0.05 in comparisons of water treatment (stressed or watered), endophyte presence or absence, or both. Stress affected 38% of the plant transcripts including those for the expected stress-response pathways. The DEGs affected by endophyte in stressed plants were unique to individual plant genotypes. In unstressed plants, endophyte presence tended to reduce expression of genes putatively for defense against fungi, but in unstressed P27 endophyte presence there was enhanced expression of dehydrin and heat shock protein genes. Our results indicated subtle and variable effects of endophytes on tall fescue gene expression; where the endophyte confers protection, its effects on plant gene expression may help prime the plant for stress resistance.


Asunto(s)
Endófitos , Festuca/genética , Regulación de la Expresión Génica de las Plantas , Lolium/genética , Estrés Fisiológico/genética , Festuca/microbiología , Perfilación de la Expresión Génica , Lolium/microbiología , ARN de Planta , Análisis de Secuencia de ARN , Agua
12.
Mol Plant Microbe Interact ; 32(2): 194-207, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30145935

RESUMEN

Epichloë species are fungal symbionts (endophytes) of cool-season grasses that transmit vertically via inflorescence primordia (IP), ovaries (OV), and ultimately, embryos. Epichloë coenophiala, an endophyte of tall fescue (Schedonorus arundinaceus), provides multiple protective benefits to the grass. We conducted transcriptome analysis of the tall fescue-E. coenophiala symbiosis, comparing IP, OV, vegetative pseudostems (PS), and the lemma and palea (LP) (bracts) of the young floret. Transcriptomes of host OV and PS exhibited almost no significant differences attributable to endophyte presence or absence. Comparison of endophyte gene expression in different plant parts revealed numerous differentially expressed genes (DEGs). The 150 endophyte DEGs significantly higher in PS over OV included genes for alkaloid biosynthesis and sugar or amino acid transport. The 277 endophyte DEGs significantly higher in OV over PS included genes for protein chaperones (including most heat-shock proteins), trehalose synthesis complex, a bax inhibitor-1 protein homolog, the CLC chloride ion channel, catalase, and superoxide dismutase. Similar trends were apparent in the Brachypodium sylvaticum-Epichloë sylvatica symbiosis. Gene expression profiles in tall fescue IP and LP indicated that the endophyte transcriptome shift began early in host floral development. We discuss possible roles of the endophyte DEGs in colonization of reproductive grass tissues.


Asunto(s)
Epichloe , Festuca , Simbiosis , Transcriptoma , Endófitos/genética , Endófitos/fisiología , Epichloe/genética , Epichloe/fisiología , Festuca/genética , Festuca/crecimiento & desarrollo , Festuca/microbiología , Interacciones Huésped-Parásitos/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-30387738

RESUMEN

Evolutionary hypotheses provide important underpinnings of biological and medical sciences, and comprehensive, genome-wide understanding of evolutionary relationships among organisms are needed to test and refine such hypotheses. Theory and empirical evidence clearly indicate that phylogenies (trees) of different genes (loci) should not display precisely matching topologies. The main reason for such phylogenetic incongruence is reticulated evolutionary history of most species due to meiotic sexual recombination in eukaryotes, or horizontal transfers of genetic material in prokaryotes. Nevertheless, many genes should display topologically related phylogenies, and should group into one or more (for genetic hybrids) clusters in poly-dimensional "tree space". Unusual evolutionary histories or effects of selection may result in "outlier" genes with phylogenies that fall outside the main distribution(s) of trees in tree space. We present a new phylogenomic method, CURatio, which uses ratios of total branch lengths in gene trees to help identify phylogenetic outliers in a given set of ortholog groups from multiple genomes. An advantage of CURatio over other methods is that genes absent from and/or duplicated in some genomes can be included in the analysis. We conducted a simulation study under the coalescent model, and showed that, given sufficient species depth and topological difference, these ratios are significantly higher for the "outlier" gene phylogenies. Also, we applied CURatio to a set of annotated genomes of the fungal family, Clavicipitaceae, and identified alkaloid biosynthesis genes as outliers, probably due to a history of duplication and loss. The source code is available at https://github.com/QiwenKang/CURatio, and the empirical data set on Clavicipitaceae and simulated data set are available at Mendeley https://data.mendeley.com/datasets/mrxts7wjrr/1.

14.
PLoS Genet ; 14(10): e1007467, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30356280

RESUMEN

Structural features of genomes, including the three-dimensional arrangement of DNA in the nucleus, are increasingly seen as key contributors to the regulation of gene expression. However, studies on how genome structure and nuclear organisation influence transcription have so far been limited to a handful of model species. This narrow focus limits our ability to draw general conclusions about the ways in which three-dimensional structures are encoded, and to integrate information from three-dimensional data to address a broader gamut of biological questions. Here, we generate a complete and gapless genome sequence for the filamentous fungus, Epichloë festucae. We use Hi-C data to examine the three-dimensional organisation of the genome, and RNA-seq data to investigate how Epichloë genome structure contributes to the suite of transcriptional changes needed to maintain symbiotic relationships with the grass host. Our results reveal a genome in which very repeat-rich blocks of DNA with discrete boundaries are interspersed by gene-rich sequences that are almost repeat-free. In contrast to other species reported to date, the three-dimensional structure of the genome is anchored by these repeat blocks, which act to isolate transcription in neighbouring gene-rich regions. Genes that are differentially expressed in planta are enriched near the boundaries of these repeat-rich blocks, suggesting that their three-dimensional orientation partly encodes and regulates the symbiotic relationship formed by this organism.


Asunto(s)
ADN de Hongos/genética , Epichloe/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Secuencia Rica en At/genética , ADN de Hongos/química , Proteínas Fúngicas/genética , Secuencia Rica en GC/genética , Perfilación de la Expresión Génica/métodos , Hifa/genética , Análisis de Secuencia de ADN/métodos , Simbiosis/genética
15.
Biochemistry ; 57(14): 2074-2083, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29537853

RESUMEN

The core of the loline family of insecticidal alkaloids is the bicyclic pyrrolizidine unit with an additional strained ether bridge between carbons 2 and 7. Previously reported genetic and in vivo biochemical analyses showed that the presumptive iron- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, LolO, is required for installation of the ether bridge upon the pathway intermediate, 1- exo-acetamidopyrrolizidine (AcAP). Here we show that LolO is, in fact, solely responsible for this biosynthetic four-electron oxidation. In sequential 2OG- and O2-consuming steps, LolO removes hydrogens from C2 and C7 of AcAP to form both carbon-oxygen bonds in N-acetylnorloline (NANL), the precursor to all other lolines. When supplied with substoichiometric 2OG, LolO only hydroxylates AcAP. At higher 2OG:AcAP ratios, the enzyme further processes the alcohol to the tricyclic NANL. Characterization of the alcohol intermediate by mass spectrometry and nuclear magnetic resonance spectroscopy shows that it is 2- endo-hydroxy-1- exo-acetamidopyrrolizidine (2- endo-OH-AcAP). Kinetic and spectroscopic analyses of reactions with site-specifically deuteriated AcAP substrates confirm that the C2-H bond is cleaved first and that the responsible intermediate is, as expected, an FeIV-oxo (ferryl) complex. Analyses of the loline products from cultures fed with stereospecifically deuteriated AcAP precursors, proline and aspartic acid, establish that LolO removes the endo hydrogens from C2 and C7 and forms both new C-O bonds with retention of configuration. These findings delineate the pathway to an important class of natural insecticides and lay the foundation for mechanistic dissection of the chemically challenging oxacyclization reaction.


Asunto(s)
Alcaloides/química , Epichloe/enzimología , Proteínas Fúngicas/química , Hierro/química , Ácidos Cetoglutáricos/química , Oxigenasas/química
16.
G3 (Bethesda) ; 7(6): 1791-1797, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28381497

RESUMEN

Swainsonine-a cytotoxic fungal alkaloid and a potential cancer therapy drug-is produced by the insect pathogen and plant symbiont Metarhizium robertsii, the clover pathogen Slafractonia leguminicola, locoweed symbionts belonging to Alternaria sect. Undifilum, and a recently discovered morning glory symbiont belonging to order Chaetothyriales. Genome sequence analyses revealed that these fungi share orthologous gene clusters, designated "SWN," which included a multifunctional swnK gene comprising predicted adenylylation and acyltransferase domains with their associated thiolation domains, a ß-ketoacyl synthase domain, and two reductase domains. The role of swnK was demonstrated by inactivating it in M. robertsii through homologous gene replacement to give a ∆swnK mutant that produced no detectable swainsonine, then complementing the mutant with the wild-type gene to restore swainsonine biosynthesis. Other SWN cluster genes were predicted to encode two putative hydroxylases and two reductases, as expected to complete biosynthesis of swainsonine from the predicted SwnK product. SWN gene clusters were identified in six out of seven sequenced genomes of Metarhzium species, and in all 15 sequenced genomes of Arthrodermataceae, a family of fungi that cause athlete's foot and ringworm diseases in humans and other mammals. Representative isolates of all of these species were cultured, and all Metarhizium spp. with SWN clusters, as well as all but one of the Arthrodermataceae, produced swainsonine. These results suggest a new biosynthetic hypothesis for this alkaloid, extending the known taxonomic breadth of swainsonine producers to at least four orders of Ascomycota, and suggest that swainsonine has roles in mutualistic symbioses and diseases of plants and animals.


Asunto(s)
Vías Biosintéticas/genética , Hongos/genética , Hongos/metabolismo , Swainsonina/metabolismo , Hongos/patogenicidad , Técnicas de Silenciamiento del Gen , Genes Fúngicos , Genoma Fúngico , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Familia de Multigenes , Simbiosis , Virulencia/genética
17.
Phytopathology ; 107(5): 504-518, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28168931

RESUMEN

Ergot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes. More than a half-century of research has brought us extensive knowledge of ergot-alkaloid biosynthetic pathways from common early steps to several taxon-specific branches. Furthermore, a recent flurry of genome sequencing has revealed the genomic processes underlying ergot-alkaloid diversification. In this review, we discuss the evolution of ergot-alkaloid biosynthesis genes and gene clusters, including roles of gene recruitment, duplication and neofunctionalization, as well as gene loss, in diversifying structures of clavines, lysergic acid amides, and complex ergopeptines. Also reviewed are prospects for manipulating ergot-alkaloid profiles to enhance suitability of endophytes for forage grasses.


Asunto(s)
Claviceps/genética , Alcaloides de Claviceps/genética , Evolución Molecular , Hypocreales/genética , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Vías Biosintéticas , Claviceps/química , Claviceps/metabolismo , Endófitos , Alcaloides de Claviceps/química , Alcaloides de Claviceps/metabolismo , Genómica , Hypocreales/química , Hypocreales/metabolismo , Familia de Multigenes , Micotoxinas/química , Micotoxinas/genética , Micotoxinas/metabolismo , Simbiosis
18.
New Phytol ; 213(1): 324-337, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27477008

RESUMEN

Tall fescue (Lolium arundinaceum) is one of the primary forage and turf grasses in temperate regions of the world. A number of favourable characteristics of tall fescue are enhanced by its seed-transmissible fungal symbiont (endophyte) Epichloë coenophiala. Our approach was to assemble the tall fescue transcriptome, then identify differentially expressed genes (DEGs) for endophyte-symbiotic (E+) vs endophyte-free (E-) clones in leaf blades, pseudostems, crowns and roots. RNA-seq reads were used to construct a tall fescue reference transcriptome and compare gene expression profiles. Over all tissues examined, 478 DEGs were identified between the E+ and E- clones for at least one tissue (more than two-fold; P < 0.0001, 238 E+ > E- and 240 E- > E+), although no genes were differentially expressed in all four tissues. Gene ontology (GO) terms, GO:0010200 (response to chitin), GO:0002679 (respiratory burst during defence response) and GO:0035556 (intracellular signal transduction) were significantly overrepresented among 25 E- > E+ DEGs in leaf blade, and a number of other DEGs were associated with defence and abiotic response. In particular, endophyte effects on various WRKY transcription factors may have implications for symbiotic stability, endophyte distribution in the plant, or defence against pathogens.


Asunto(s)
Endófitos/fisiología , Epichloe/fisiología , Lolium/genética , Lolium/microbiología , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Mol Plant Microbe Interact ; 30(2): 138-149, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28027026

RESUMEN

Increased resilience of pasture grasses mediated by fungal Epichloë endophytes is crucial to pastoral industries. The underlying mechanisms are only partially understood and likely involve very different activities of the endophyte in different plant tissues and responses of the plant to these. We analyzed the transcriptomes of Epichloë festucae and its host, Lolium perenne, in host tissues of different function and developmental stages. The endophyte contributed approximately 10× more to the transcriptomes than to the biomass of infected tissues. Proliferating mycelium in growing host tissues highly expressed genes involved in hyphal growth. Nonproliferating mycelium in mature plant tissues, transcriptionally equally active, highly expressed genes involved in synthesizing antiherbivore compounds. Transcripts from the latter accounted for 4% of fungal transcripts. Endophyte infection systemically but moderately increased transcription of L. perenne genes with roles in hormone biosynthesis and perception as well as stress and pathogen resistance while reducing expression of genes involved in photosynthesis. There was a good correlation between transcriptome-based observations and physiological observations. Our data indicate that the fitness-enhancing effects of the endophyte are based both on its biosynthetic activities, predominantly in mature host tissues, and also on systemic alteration of the host's hormonal responses and induction of stress response genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Asunto(s)
Endófitos/fisiología , Ambiente , Epichloe/fisiología , Interacciones Huésped-Patógeno , Lolium/inmunología , Lolium/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , ADN de Plantas/metabolismo , Endófitos/genética , Epichloe/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes Fúngicos , Herbivoria , Hifa/genética , Lolium/crecimiento & desarrollo , Sistemas de Lectura Abierta/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Simbiosis/genética , Transcripción Genética , Transcriptoma/genética
20.
Mycologia ; 109(6): 847-859, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29528270

RESUMEN

Cool-season grasses (Poaceae subfamily Poöideae) are an important forage component for livestock in western China, and many have seed-transmitted symbionts of the genus Epichloë, fungal endophytes that are broadly distributed geographically and in many tribes of the Poöideae. Epichloë strains can produce any of several classes of alkaloids, of which ergot alkaloids and indole-diterpenes can be toxic to mammalian and invertebrate herbivores, whereas lolines and peramine are more selective against invertebrates. The authors characterized genotypes and alkaloid profiles of Epichloë bromicola isolates symbiotic with Elymus dahuricus, an important forage grass in rangelands of China. The endophyte was seed-transmitted and occasionally produced fruiting bodies (stromata), but its sexual state was not observed on this host. The genome sequence of E. bromicola isolate E7626 from El. dahuricus in Xinjiang Province revealed gene sets for peramine, ergot alkaloids, and indole-diterpenes. In multiplex polymerase chain reaction (PCR) screens of El. dahuricus-endophyte isolates from Beijing and two locations in Shanxi Province, most were also positive for these genes. Ergovaline and other ergot alkaloids, terpendoles and other indole-diterpenes, and peramine were confirmed in El. dahuricus plants with E. bromicola. The presence of ergot alkaloids and indole-diterpenes in this grass is a potential concern for managers of grazing livestock.


Asunto(s)
Elymus/microbiología , Endófitos/aislamiento & purificación , Endófitos/fisiología , Epichloe/aislamiento & purificación , Epichloe/fisiología , Micotoxinas/análisis , Simbiosis , Alcaloides/análisis , Vías Biosintéticas/genética , China , Endófitos/genética , Epichloe/clasificación , Epichloe/genética , Genoma Fúngico , Genotipo , Reacción en Cadena de la Polimerasa Multiplex , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...